
1Digital Logic Circuits

DIGITAL LOGIC CIRCUITS
Introduction

Logic Gates

Boolean Algebra

Map Specification

Combinational Circuits

Flip-Flops

Sequential Circuits

Memory Components

Integrated CircuitsIntegrated Circuits

Computer Organization Computer Architectures Lab

2Digital Logic Circuits Logic Gates

LOGIC GATES
Digital ComputersDigital Computers

- Imply that the computer deals with digital information, i.e., it deals
with the information that is represented by binary digits

- Why BINARY ? instead of Decimal or other number system ?- Why BINARY ? instead of Decimal or other number system ?

* Consider electronic signal

1 7

signal
range

0

1 7
6
5
4
3
2
1

0 1 2 3 4 5 6 7 8 9

0 1
0

binary octal

* Consider the calculation cost - Add 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 1011
3 3 4 5 6 7 8 9 101112
4 4 5 6 7 8 9 10111213
5 5 6 7 8 9 1011121314

0 1
0 1
1 10

0
1

* Consider the calculation cost - Add

Computer Organization Computer Architectures Lab

5 5 6 7 8 9 1011121314
6 6 7 8 9 101112131415
7 7 8 9 10111213141516
8 8 9 1011121314151617
9 9 101112131415161718

1 101

3Digital Logic Circuits

BASIC LOGIC BLOCK - GATE -
Logic Gates

Gate.
..

Binary
Digital
Input
Signal

Binary
Digital
Output
Signal

Types of Basic Logic Blocks

.Signal Signal

- Combinational Logic Block
Logic Blocks whose output logic value
depends only on the input logic values

- Sequential Logic Block
Logic Blocks whose output logic value
depends on the input values and the
state (stored information) of the blocksstate (stored information) of the blocks

Functions of Gates can be described by

- Truth Table

Computer Organization Computer Architectures Lab

- Truth Table
- Boolean Function
- Karnaugh Map

4Digital Logic Circuits

COMBINATIONAL GATES
Name Symbol Function Truth Table

Logic Gates

Name Symbol Function Truth Table

AND
A X = A • B

X or
B X = AB

0 0 0
0 1 0
1 0 0
1 1 1

A

A B X

A B X
0 0 0
0 1 1
1 0 1
1 1 1

OR A
X X = A + B

B

I A X X = A’ 0 1
1 0

A B X

A X

1 0

Buffer A X X = A
A X
0 0
1 1

NAND A
X X = (AB)’

0 0 1
0 1 1
1 0 1

A B X

A
X X = (A + B)’

B

NAND X X = (AB)’
B

0 1 1
1 0 1
1 1 0

NOR 0 0 1
0 1 0
1 0 0
1 1 0

A B X

1 1 0

XOR
Exclusive OR

A X = A B
X or

B X = A’B + AB’
0 0 0
0 1 1
1 0 1
1 1 0

A B X

A B X

Computer Organization Computer Architectures Lab

A X = (A B)’
X or

B X = A’B’+ AB

0 0 1
0 1 0
1 0 0
1 1 1

XNOR
Exclusive NOR
or Equivalence

A B X

5Digital Logic Circuits

BOOLEAN ALGEBRA
Boolean Algebra

Boolean Algebra

* Algebra with Binary(Boolean) Variable and Logic Operations
* Boolean Algebra is useful in Analysis and Synthesis of * Boolean Algebra is useful in Analysis and Synthesis of

Digital Logic Circuits

- Input and Output signals can be
represented by Boolean Variables, andrepresented by Boolean Variables, and

- Function of the Digital Logic Circuits can be represented by
Logic Operations, i.e., Boolean Function(s)

- From a Boolean function, a logic diagram
can be constructed using AND, OR, and I can be constructed using AND, OR, and I

Truth Table

* The most elementary specification of the function of a Digital Logic * The most elementary specification of the function of a Digital Logic
Circuit is the Truth Table

- Table that describes the Output Values for all the combinations
of the Input Values, called MINTERMS

Computer Organization Computer Architectures Lab

of the Input Values, called MINTERMS
- n input variables → 2n minterms

6Digital Logic Circuits

LOGIC CIRCUIT DESIGN
x y z F

Boolean Algebra

x y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0

Truth
Table

0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 11 1 1 1

F = x + y’zBoolean
FunctionFunction

x
y
z

F
Logic

Diagram

Computer Organization Computer Architectures Lab

zDiagram

7Digital Logic Circuits

BASIC IDENTITIES OF BOOLEAN ALGEBRA
[1] x + 0 = x [2] x • 0 = 0

Boolean Algebra

[1] x + 0 = x
[3] x + 1 = 1
[5] x + x = x
[7] x + x’ = 1
[9] x + y = y + x
[11] x + (y + z) = (x + y) + z

[2] x • 0 = 0
[4] x • 1 = x
[6] x • x = x
[8] x • X’ = 0
[10] xy = yx
[12] x(yz) = (xy)z

[9] x + y = y + x
[11] x + (y + z) = (x + y) + z
[13] x(y + z) = xy +xz
[15] (x + y)’ = x’y’
[17] (x’)’ = x

[10] xy = yx
[12] x(yz) = (xy)z
[14] x + yz = (x + y)(x + z)
[16] (xy)’ = x’ + y’

[15] and [16] : De Morgan’s Theorem[15] and [16] : De Morgan’s Theorem
Usefulness of this Table

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions
to obtain logic diagrams utilizing different logic gatesto obtain logic diagrams utilizing different logic gates
-- Ordinarily ANDs, ORs, and Inverters
-- But a certain different form of Boolean function may be convenient

to obtain circuits with NANDs or NORs
→ Applications of De Morgans Theorem→ Applications of De Morgans Theorem

x’y’ = (x + y)’ x’+ y’= (xy)’
I, AND → NOR I, OR → NAND

Computer Organization Computer Architectures Lab

8Digital Logic Circuits

EQUIVALENT CIRCUITS
Boolean Algebra

F = ABC + ABC’ + A’C …… (1)
= AB(C + C’) + A’C [13] ..…. (2)

Many different logic diagrams are possible for a given Function

= AB(C + C’) + A’C [13] ..…. (2)
= AB • 1 + A’C [7]
= AB + A’C [4] ...…. (3)

(1)
A
B(1) B
C

F

(2) A
B

C F

(3) A
B

Computer Organization Computer Architectures Lab

FB

C

9Digital Logic Circuits

COMPLEMENT OF FUNCTIONS
A Boolean function of a digital logic circuit is represented by only using

Boolean Algebra

A Boolean function of a digital logic circuit is represented by only using
logical variables and AND, OR, and Invert operators.

→ Complement of a Boolean function

- Replace all the variables and subexpressions in the parentheses
appearing in the function expression with their respective complements

A,B,...,Z,a,b,...,z A’,B’,...,Z’,a’,b’,...,z’A,B,...,Z,a,b,...,z A’,B’,...,Z’,a’,b’,...,z’
(p + q) (p + q)’

- Replace all the operators with their respective
complementary operatorscomplementary operators

AND OR
OR AND

- Basically, extensive applications of the De Morgan’s theorem

(x1 + x2 + ... + xn)’ x1’x2’... xn’

Computer Organization Computer Architectures Lab

(x1x2 ... xn)' x1' + x2' +...+ xn'

10Digital Logic Circuits

SIMPLIFICATION
Map Simplification

Truth
Table

Boolean
Function

Unique Many different expressions existUnique Many different expressions exist

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain
- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain

a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for
simplifying Boolean expressions.

Truth
TableTable

Boolean

Karnaugh
Map

Simplified
Boolean
Function

Computer Organization Computer Architectures Lab

Boolean
function

11Digital Logic Circuits

KARNAUGH MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products

Map Simplification

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products
form of Boolean Function, or Truth Table) is

- Rectangle divided into 2n cells
- Each cell is associated with a Minterm
- An output(function) value for each input value associated with a - An output(function) value for each input value associated with a

mintern is written in the cell representing the minterm
→ 1-cell, 0-cell

Each Minterm is identified by a decimal number whose binary representation Each Minterm is identified by a decimal number whose binary representation
is identical to the binary interpretation of the input values of the minterm.

x x
Karnaugh Map

valueIdentification
x F
0 1
1 0

x
0
1

0
1

x
0
1

0
1

value
of F

Identification
of the cell

F(x) = (1)

x y F
0 0 0
0 1 1
1 0 1

y
x 0 1
0
1

0 1

2 3
y

x 0 1
0 0 1

1-cell

Computer Organization Computer Architectures Lab

1 0 1
1 1 1

1 2 3
1

0 1
1 0

F(x,y) = (1,2)

12Digital Logic Circuits

KARNAUGH MAP
Map Simplification

x y z F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0

0 1 0 1
1 0 0 0

x
yz

00 01 11 10
0 0 1 3 2

4 5 7 6

x
yz

00 01 11 10
0
11x

y
x y z F

1 0 1 0
1 1 0 0
1 1 1 0

1 0 0 04 5 7 6 1
F(x,y,z) = (1,2,4)

1x
z

wx 00 01 11 10
w

u v w x F
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0

uv
wx 00 01 11 10
00
01
11

0 1 3 2

4 5 7 6

12 13 15 14u

v

u v w x F

0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0

11
10 8 9 11 10

uv
wx 00 01 11 10
00 0 1 1 0

u

x

1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

uv
00
01
11 0 0 0 1
10 1 1 1 0

0 1 1 0
0 0 0 1

Computer Organization Computer Architectures Lab

10 1 1 1 0
F(u,v,w,x) = (1,3,6,8,9,11,14)

13Digital Logic Circuits

MAP SIMPLIFICATION - 2 ADJACENT CELLS -
Map Simplification

Adjacent cells

- binary identifications are different in one bit

Rule: xy’ +xy = x(y+y’) = x

- binary identifications are different in one bit
→ minterms associated with the adjacent

cells have one variable complemented each other

Cells (1,0) and (1,1) are adjacentCells (1,0) and (1,1) are adjacent
Minterms for (1,0) and (1,1) are

x • y’ --> x=1, y=0
x • y --> x=1, y=1

F = xy’+ xy can be reduced to F = x
From the map

x
y 0 1

0 0 0 2 adjacent cells xy’ and xy0
1 1 1

0 0

 (2,3)F(x,y) =

2 adjacent cells xy’ and xy
→ merge them to a larger cell x

Computer Organization Computer Architectures Lab

= xy’+ xy
= x

14Digital Logic Circuits

MAP SIMPLIFICATION - MORE THAN 2 CELLS -

wx wxu’v’

Map Simplification

u’v’w’x’ + u’v’w’x + u’v’wx + u’v’wx’
= u’v’w’(x’+x) + u’v’w(x+x’)
= u’v’w’ + u’v’w
= u’v’(w’+w)

uv
wx

1 1 1 1
uv

wx

1 1 1 1
1 1

v

w

v

w
u’v’ u’x’

1 1vw’= u’v’(w’+w)
= u’v’ 1 1

1 1

1 1

1 1u
v

x

u
v

xuw v’x

1 1
1 1

vw’

u’v’w’x’+u’v’w’x+u’vw’x’+u’vw’x+uvw’x’+uvw’x+uv’w’x’+uv’w’x
= u’v’w’(x’+x) + u’vw’(x’+x) + uvw’(x’+x) + uv’w’(x’+x)
= u’(v’+v)w’ + u(v’+v)w’= u’(v’+v)w’ + u(v’+v)w’
= (u’+u)w’ = w’

wuv
wx

1 1
uv

1 1 1 1
V’w

u
v

1 1
1 1
1 1
1 1 u

v
1 1
1 1

1 1
1 1

1 1 1 1w’

u

Computer Organization Computer Architectures Lab

x
1 1 1 11 1

x

15Digital Logic Circuits

MAP SIMPLIFICATION
wx

00 01 11 10 w

Map Simplification

uv
wx

00 01 11 10
00
01 0 0 0 0
11 0 1 1 0

1 1 0 1

v

w

0 0 0 0
1 1 0 1

0 1 1 011 0 1 1 0
10 0 1 0 0

F(u,v,w,x) = (0,1,2,9,13,15)

u
v

x

0 1 1 0
0 1 0 0

(0,1), (0,2), (0,4), (0,8)
Adjacent Cells of 1
Adjacent Cells of 0

(1,0), (1,3), (1,5), (1,9)

F(u,v,w,x) = (0,1,2,9,13,15)
Merge (0,1) and (0,2)

--> u’v’w’ + u’v’x’
Merge (1,9)

(1,0), (1,3), (1,5), (1,9)
...
...
Adjacent Cells of 15

(15,7), (15,11), (15,13), (15,14)

--> v’w’x
Merge (9,13)

--> uw’x
Merge (13,15)

(15,7), (15,11), (15,13), (15,14)
Merge (13,15)

--> uvx

F = u’v’w’ + u’v’x’ + v’w’x + uw’x + uvx
But (9,13) is covered by (1,9) and (13,15)

Computer Organization Computer Architectures Lab

But (9,13) is covered by (1,9) and (13,15)
F = u’v’w’ + u’v’x’ + v’w’x + uvx

16Digital Logic Circuits

IMPLEMENTATION OF K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map

Map Simplification

Logic function represented by a Karnaugh map
can be implemented in the form of I-AND-OR

A cell or a collection of the adjacent 1-cells canA cell or a collection of the adjacent 1-cells can
be realized by an AND gate, with some inversion of the input variables.

y

x’
y’

x’
y
z’1 1

x’x
z

x’
y’
z’

z’
x
y
z’

1
1

F(x,y,z) = (0,2,6)

1 1
1

x’
z’

y
z’

F(x,y,z) = (0,2,6)

x’

x’
y’
z’ x

x’
y
x
y
z’

z’
F z

y
z

F
z’

Computer Organization Computer Architectures Lab

z’
I AND OR

17Digital Logic Circuits

IMPLEMENTATION OF K-MAPS - Product-of-Sums Form -
Map Simplification

Logic function represented by a Karnaugh map
can be implemented in the form of I-OR-AND

If we implement a Karnaugh map using 0-cells,If we implement a Karnaugh map using 0-cells,
the complement of F, i.e., F’, can be obtained.
Thus, by complementing F’ using DeMorgan’s
theorem F can be obtained

F(x,y,z) = (0,2,6)

x

y
z

F’ = xy’ + z

F = (xy’)z’
0 01 1

0 0 0 1x
zx

y’

F = (xy’)z’
= (x’ + y)z’0 0 0 1

x
y

z F

Computer Organization Computer Architectures Lab

z

I OR AND

18Digital Logic Circuits
IMPLEMENTATION OF K-MAPS

- Don’t-Care Conditions -
In some logic circuits, the output responses

Map Simplification

In some logic circuits, the output responses
for some input conditions are don’t care
whether they are 1 or 0.

In K-maps, don’t-care conditions are representedIn K-maps, don’t-care conditions are represented
by d’s in the corresponding cells.

Don’t-care conditions are useful in minimizing
the logic functions using K-map.
Don’t-care conditions are useful in minimizing
the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells

--> Reduce the number of variables in the product terms--> Reduce the number of variables in the product terms

x

y
1 d d 1

d 1

x’

yz’
x

z yz’

x F

Computer Organization Computer Architectures Lab

x
y
z

F

19Digital Logic Circuits

COMBINATIONAL LOGIC CIRCUITS

Half Adder

Combinational Logic Circuits

y yx y c sHalf Adder

x

y

x

y

c = xy s = xy’ + x’y
= x y

x
y c

s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x y c s
0

1
0

0
0

0
1

1

0 0 0 0 0
0 0 1 0 1

y y

= x y
Full Adder

1 1 1 0

x y cn-1 cn s
0 0 0 10 0 0 0 0

0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1

x
cn-1

x
cn-1

cn s

0
1
0

1
1
1

1
0
1

0
1
0

1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

cn = xy + xcn-1+ ycn-1
= xy + (x y)cn-1

s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1
= x y c = (x y) c

cn s

= x y cn-1 = (x y) cn-1x
y

c

S

Computer Organization Computer Architectures Lab

cn-1
cn

20Digital Logic Circuits

COMBINATIONAL LOGIC CIRCUITS
Combinational Logic Circuits

Other Combinational CircuitsOther Combinational Circuits

Multiplexer
Encoder
DecoderDecoder
Parity Checker
Parity Generator
etc

Computer Organization Computer Architectures Lab

21Digital Logic Circuits

MULTIPLEXER
Combinational Logic Circuits

4-to-1 Multiplexer

0 0 I

Select Output
S1 S0 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3

I0

I1

I2
Y

I3

S

Computer Organization Computer Architectures Lab

S0
S1

22Digital Logic Circuits

ENCODER/DECODER
Combinational Logic Circuits

Octal-to-Binary Encoder D1
D2

D3D

A0

A1D3

D5
D6
D7

D4
A2

D7

2-to-4 Decoder

A0

D0

D1
0 0 0 0 1 1 1
E A1 A0 D0 D1 D2 D3

2-to-4 Decoder

A1

D2

D3

0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 0
1 d d 1 1 1 1

Computer Organization Computer Architectures Lab

A1
E

1 d d 1 1 1 1

23Digital Logic Circuits

FLIP FLOPS
Characteristics

Flip Flops

Characteristics
- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

1 0 0 1

0-state 1-state
In order to be used in the computer circuits, state of the flip flop should
have input terminals and output terminals so that it can be set to a certain

0 1 1 0

In order to be used in the computer circuits, state of the flip flop should
have input terminals and output terminals so that it can be set to a certain
state, and its state can be read externally.

R Q S R Q(t+1)
0 0 Q(t)

S

Q

Q’

0 0 Q(t)
0 1 0
1 0 1
1 1 indeterminate

(forbidden)

Computer Organization Computer Architectures Lab

S Q’
(forbidden)

24Digital Logic Circuits

CLOCKED FLIP FLOPS
In a large digital system with many flip flops, operations of individual flip flops

Flip Flops

In a large digital system with many flip flops, operations of individual flip flops
are required to be synchronized to a clock pulse. Otherwise,
the operations of the system may be unpredictable.

R QR Q

Q’

c
(clock)

S Q’

Clock pulse allows the flip flop to change state only
when there is a clock pulse appearing at the c terminal.

S Q S Q

when there is a clock pulse appearing at the c terminal.

We call above flip flop a Clocked RS Latch, and symbolically as

S Q
c

R Q’

S Q
c

R Q’
operates when operates when

Computer Organization Computer Architectures Lab

operates when operates when
clock is high clock is low

25Digital Logic Circuits

RS-LATCH WITH PRESET AND CLEAR INPUTS
Flip Flops

P(preset)

R Q
c

P(preset)

S Q’

c(clock)

clr(clear)clr(clear)

S Q S QP PS Q
c

R Q’

S Q
c

R Q’

P

clr

P

clr

S Q
c

P S Q
c

P

Computer Organization Computer Architectures Lab

R Q’clr R Q’clr

26Digital Logic Circuits

D-LATCH
Flip Flops

D-Latch
Forbidden input values are forced not to occur
by using an inverter between the inputs

Q

E

D Q

E Q’

Q’
D(data)

E
(enable) E Q’

D Q

E Q’D Q(t+1)
0 0
1 11 1

Computer Organization Computer Architectures Lab

27Digital Logic Circuits

EDGE-TRIGGERED FLIP FLOPS
Flip Flops

Characteristics
- State transition occurs at the rising edge or

falling edge of the clock pulse

Latches

respond to the input only during these periods

Edge-triggered Flip Flops (positive)

respond to the input only at this time

Computer Organization Computer Architectures Lab

28Digital Logic Circuits

POSITIVE EDGE-TRIGGERED
Flip Flops

D-Flip FlopD-Flip Flop
S1 Q1

C1

R1 Q1'

S2 Q2

C2

R2 Q2'

D Q

Q'

D

C

Q

Q'

SR1 SR2
D-FF

R1 Q1' R2 Q2'
C

Q' C Q'

SR1 inactive

JK-Flip Flop
SR1 active

SR2 active

SR1 active
SR2 inactive SR2 inactive

SR1 inactive

JK-Flip Flop

S1 Q1 S2 Q2
SR1 SR2

J Q J Q
CC1

R1 Q1'

C2

R2 Q2'

SR1 SR2

K
C

Q'
C

K Q'

Computer Organization Computer Architectures Lab

T-Flip Flop: JK-Flip Flop whose J and K inputs are tied together to make
T input. Toggles whenever there is a pulse on T input.

29Digital Logic Circuits

CLOCK PERIOD

Clock period determines how fast the digital circuit operates.

Flip Flops

Clock period determines how fast the digital circuit operates.
How can we determine the clock period ?

Usually, digital circuits are sequential circuits which has some flip flops

...FF
C

FF FF

.

.

.

C

Combinational
Logic
Circuit

.

.

.

Combinational
LogicFF FF

. Circuit .

Logic
Circuit

FF

Combinational logic Delay
FF Setup Time
FF Hold TimeFF Delay

td t ,t

Computer Organization Computer Architectures Lab

td ts,th
clock period T = td + ts + th

30Digital Logic Circuits

DESIGN EXAMPLE
Design Procedure:

Sequential Circuits

Design Procedure:
Specification State Diagram State Table
Excitation Table Karnaugh Map Circuit Diagram

Example: 2-bit Counter -> 2 FF'sExample: 2-bit Counter -> 2 FF's
current next
state input state FF inputs
A B x A B Ja Ka Jb Kb
0 0 0 0 0 0 d 0 d
0 0 1 0 1 0 d 1 d
0 1 0 0 1 0 d d 0

00

x=0

x=1

x=0

x=1

0 1 0 0 1 0 d d 0
0 1 1 1 0 1 d d 1
1 0 0 1 0 d 0 0 d
1 0 1 1 1 d 0 1 d
1 1 0 1 1 d 0 d 0
1 1 1 0 0 d 1 d 1

01

10

11 x=0

x=1

x=0

x=1
x=0

1 1 1 0 0 d 1 d 1

B

1 x

B
d d
d d

B

x1
d
d

x=0

B

x1 d
d

A
x

Ja

1

d d
d d

x
A

Ka

d d
1

Kb

A
x1

1
d

d
d

clock

J Q
C

K Q'

J Q
C

K Q'

x AA
x1 d

1 d
d

Jb

B

Computer Organization Computer Architectures Lab

Ja = Bx Ka = Bx Jb = x Kb = x clock

31Digital Logic Circuits

SEQUENTIAL CIRCUITS - Registers
Sequential Circuits

A0 A1 A2 A3

D
Q

C D
Q

C D
Q

C D
Q

C

A0 A1 A2 A3

Clock
I I I II0 I1 I2 I3

Shift Registers

D Q
C

D Q
C

D Q
C

D Q
C

Serial
Input

Serial
Output

Bidirectional Shift Register with Parallel Load

C C C CInput

Clock

A0 A1 A2
A3

D
Q

C D
Q

C D
Q

C D
Q

C

A0 A1 A2
A3

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

Computer Organization Computer Architectures Lab

Clock S0S1 SeriaI
Input

I0 I1 I2 I3Serial
Input

32Digital Logic Circuits

SEQUENTIUAL CIRCUITS - Counters
Sequential Circuits

A0 A1 A2 A3

J K

Q

J K

Q

J K

Q

J K

Q

ClockClock

Counter
Enable

Output
Carry

Computer Organization Computer Architectures Lab

33Digital Logic Circuits

MEMORY COMPONENTS
Memory Components

0

Logical Organization
0

words
(byte, or n bytes)

N - 1
Random Access Memory

- Each word has a unique address
- Access to a word requires the same time

N - 1

- Access to a word requires the same time
independent of the location of the word

- Organization n data input lines

2k Words
(n bits/word)

k address lines

Read

Write

Computer Organization Computer Architectures Lab

n data output lines

Write

34Digital Logic Circuits

READ ONLY MEMORY(ROM)
Characteristics

Memory Components

Characteristics
- Perform read operation only, write operation is not possible
- Information stored in a ROM is made permanent

during production, and cannot be changed
- Organization k address input lines- Organization

m x n ROM
(m=2k)

k address input lines

Information on the data output line depends only
on the information on the address input lines.

(m=2)

n data output lines

on the information on the address input lines.
--> Combinational Logic Circuit

X0=A’B’ + B’C
X1=A’B’C + A’BC’
X2=BC + AB’C’ 1 0 0 0 0

1 1 0 0 0

address Output
ABC X0 X1 X2 X3 X4

000
001X2=BC + AB’C’

X3=A’BC’ + AB’
X4=AB

X0=A’B’C’ + A’B’C + AB’C
X1=A’B’C + A’BC’

1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 1 1 0
1 0 0 1 0

001
010
011
100
101

Computer Organization Computer Architectures Lab

X1=A’B’C + A’BC’
X2=A’BC + AB’C’ + ABC
X3=A’BC’ + AB’C’ + AB’C
X4=ABC’ + ABCCanonical minterms

1 0 0 1 0
0 0 0 0 1
0 0 1 0 1

101
110
111

35Digital Logic Circuits

TYPES OF ROM
Memory Components

ROM
- Store information (function) during production
- Mask is used in the production process
- Unalterable- Unalterable
- Low cost for large quantity production --> used in the final products

PROM (Programmable ROM)
- Store info electrically using PROM programmer at the user’s site- Store info electrically using PROM programmer at the user’s site
- Unalterable
- Higher cost than ROM -> used in the system development phase

-> Can be used in small quantity system

EPROM (Erasable PROM)
- Store info electrically using PROM programmer at the user’s site
- Stored info is erasable (alterable) using UV light (electrically in

some devices) and rewriteablesome devices) and rewriteable
- Higher cost than PROM but reusable --> used in the system

development phase. Not used in the system production
due to eras ability

Computer Organization Computer Architectures Lab

36Digital Logic Circuits

INTEGRATED CIRCUITS
Memory Components

Classification by the Circuit Density

SSI - several (less than 10) independent gates
MSI - 10 to 200 gates; Perform elementary digital functions;

Decoder, adder, register, parity checker, etc
MSI - 10 to 200 gates; Perform elementary digital functions;

Decoder, adder, register, parity checker, etc
LSI - 200 to few thousand gates; Digital subsystem

Processor, memory, etc
VLSI - Thousands of gates; Digital system

Microprocessor, memory moduleMicroprocessor, memory module

Classification by Technology

TTL - Transistor-Transistor LogicTTL - Transistor-Transistor Logic
Bipolar transistors
NAND

ECL - Emitter-coupled Logic
Bipolar transistor
NORNOR

MOS - Metal-Oxide Semiconductor
Unipolar transistor
High density

CMOS - Complementary MOS

Computer Organization Computer Architectures Lab

CMOS - Complementary MOS
Low power consumption

