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2Digital Logic Circuits Logic Gates

LOGIC  GATES
Digital ComputersDigital Computers

- Imply that the computer deals with digital information, i.e., it deals 
with the information that is represented by binary digits

- Why BINARY ? instead of Decimal or  other number system ?- Why BINARY ? instead of Decimal or  other number system ?

* Consider electronic signal

1 7

signal
range

0

1 7
6
5
4
3
2
1

0  1  2  3  4  5  6  7  8  9

0 1
0

binary         octal

* Consider the calculation cost - Add 0  1  2  3  4  5  6  7  8  9
0   0  1  2  3  4  5  6  7  8  9
1   1  2  3  4  5  6  7  8  9 10
2   2  3  4  5  6  7  8  9 1011
3   3  4  5  6  7  8  9 101112
4   4  5  6  7  8  9 10111213
5   5  6  7  8  9 1011121314

0   1
0   1
1   10

0
1

* Consider the calculation cost - Add
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5   5  6  7  8  9 1011121314
6   6  7  8  9 101112131415 
7   7  8  9 10111213141516
8   8  9 1011121314151617
9   9 101112131415161718

1   101
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BASIC  LOGIC  BLOCK  - GATE -
Logic Gates

Gate.
..

Binary
Digital
Input
Signal

Binary
Digital
Output
Signal

Types of Basic Logic Blocks

.Signal Signal

- Combinational Logic Block
Logic Blocks whose output logic value
depends only on the input logic values

- Sequential Logic Block
Logic Blocks whose output logic value
depends on the input values and the
state (stored information) of the blocksstate (stored information) of the blocks

Functions of Gates can be described by

- Truth Table

Computer Organization Computer Architectures Lab

- Truth Table
- Boolean Function
- Karnaugh Map
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COMBINATIONAL  GATES
Name          Symbol           Function    Truth Table

Logic Gates

Name          Symbol           Function    Truth Table

AND 
A                                              X = A • B

X                 or
B                                              X = AB

0     0     0
0     1     0
1     0     0
1     1     1 

A                                             

A     B    X

A     B    X
0     0     0
0     1     1
1     0     1
1     1     1

OR A                                             
X          X = A + B

B                                  

I A                                 X          X = A’ 0        1
1        0

A     B    X

A        X

1        0

Buffer     A                                 X          X = A
A       X
0        0
1        1

NAND A                                    
X           X = (AB)’

0     0      1
0     1      1
1     0      1

A     B     X

A                                    
X           X = (A + B)’

B

NAND X           X = (AB)’
B

0     1      1
1     0      1
1     1      0  

NOR 0     0      1
0     1      0
1     0      0
1     1      0  

A     B     X

1     1      0  

XOR
Exclusive OR

A                                             X = A  B
X                or

B                                          X = A’B + AB’
0     0      0
0     1      1
1     0      1
1     1      0  

A     B     X

A     B     X
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A                                             X = (A  B)’
X                or

B                                          X = A’B’+ AB

0     0      1
0     1      0
1     0      0
1     1      1  

XNOR
Exclusive NOR
or Equivalence

A     B     X
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BOOLEAN  ALGEBRA
Boolean Algebra

Boolean Algebra

* Algebra with Binary(Boolean) Variable and Logic Operations
* Boolean Algebra is useful in Analysis and Synthesis of * Boolean Algebra is useful in Analysis and Synthesis of 

Digital Logic Circuits

- Input and Output signals can be 
represented by Boolean Variables, andrepresented by Boolean Variables, and

- Function of the Digital Logic Circuits can be represented by 
Logic Operations, i.e., Boolean Function(s)

- From a Boolean function, a logic diagram
can be constructed using AND, OR, and I can be constructed using AND, OR, and I 

Truth Table

* The most elementary specification of the function of a Digital Logic * The most elementary specification of the function of a Digital Logic 
Circuit is the Truth Table

- Table that describes the Output Values for all the combinations 
of the Input Values, called MINTERMS

Computer Organization Computer Architectures Lab

of the Input Values, called MINTERMS
- n input variables → 2n minterms 
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LOGIC  CIRCUIT  DESIGN
x    y    z       F

Boolean Algebra 

x    y    z       F
0    0    0       0
0    0    1       1
0    1    0       0
0    1    1       0

Truth
Table

0    1    1       0
1    0    0       1
1    0    1       1
1    1    0       1
1    1    1       11    1    1       1

F = x + y’zBoolean
FunctionFunction

x
y
z

F
Logic

Diagram

Computer Organization Computer Architectures Lab

zDiagram
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BASIC  IDENTITIES  OF  BOOLEAN  ALGEBRA
[1]   x + 0 = x [2]   x • 0 = 0

Boolean Algebra 

[1]   x + 0 = x 
[3]   x + 1 = 1
[5]   x + x = x
[7]   x + x’ = 1
[9]   x + y = y + x
[11] x + (y + z) = (x + y) + z

[2]   x • 0 = 0
[4]   x • 1 = x
[6]   x • x = x
[8]   x • X’ = 0
[10] xy = yx
[12] x(yz) = (xy)z

[9]   x + y = y + x
[11] x + (y + z) = (x + y) + z
[13] x(y + z) = xy +xz
[15] (x + y)’ = x’y’
[17] (x’)’ = x                    

[10] xy = yx
[12] x(yz) = (xy)z
[14] x + yz = (x + y)(x + z)
[16] (xy)’ = x’ + y’

[15] and [16] : De Morgan’s Theorem[15] and [16] : De Morgan’s Theorem
Usefulness of this Table

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions
to obtain logic diagrams utilizing different logic gatesto obtain logic diagrams utilizing different logic gates
-- Ordinarily ANDs, ORs, and Inverters 
-- But a certain different form of Boolean function may be convenient 

to obtain circuits with NANDs or NORs
→ Applications of De Morgans Theorem→ Applications of De Morgans Theorem

x’y’ = (x + y)’          x’+ y’= (xy)’
I, AND → NOR             I, OR → NAND

Computer Organization Computer Architectures Lab
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EQUIVALENT  CIRCUITS
Boolean Algebra 

F = ABC + ABC’ + A’C       .......…… (1)          
= AB(C + C’) + A’C          [13] ..…. (2)   

Many different logic diagrams are possible for a given Function

= AB(C + C’) + A’C          [13] ..…. (2)   
= AB • 1 + A’C                  [7]  
= AB + A’C                       [4]  ...…. (3)

(1)
A
B(1) B
C

F

(2) A
B

C F

(3) A
B

Computer Organization Computer Architectures Lab

FB

C
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COMPLEMENT  OF  FUNCTIONS
A Boolean function of a digital logic circuit is represented by only using

Boolean Algebra 

A Boolean function of a digital logic circuit is represented by only using
logical variables and AND, OR, and Invert operators.

→ Complement of a Boolean function

- Replace all the variables and subexpressions in the parentheses 
appearing in the function expression with their respective complements

A,B,...,Z,a,b,...,z    A’,B’,...,Z’,a’,b’,...,z’A,B,...,Z,a,b,...,z    A’,B’,...,Z’,a’,b’,...,z’
(p + q)    (p + q)’

- Replace all the operators with their respective
complementary operatorscomplementary operators

AND   OR
OR   AND

- Basically, extensive applications of the De Morgan’s theorem

(x1 + x2 + ... + xn )’  x1’x2’... xn’

Computer Organization Computer Architectures Lab

(x1x2 ... xn)'  x1' + x2' +...+ xn'   
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SIMPLIFICATION
Map Simplification

Truth
Table

Boolean
Function

Unique Many different expressions existUnique Many different expressions exist

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain
- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain

a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for
simplifying Boolean expressions.

Truth
TableTable

Boolean

Karnaugh
Map

Simplified
Boolean
Function

Computer Organization Computer Architectures Lab

Boolean
function
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KARNAUGH  MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products 

Map Simplification

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products 
form of Boolean Function, or Truth Table) is

- Rectangle divided into 2n cells
- Each cell is associated with a Minterm
- An output(function) value for each input value associated with a - An output(function) value for each input value associated with a 

mintern is written in the cell representing the minterm
→ 1-cell, 0-cell

Each Minterm is identified by a decimal number whose binary representation Each Minterm is identified by a decimal number whose binary representation 
is identical to the binary interpretation of the input values of the minterm.

x x
Karnaugh Map 

valueIdentification
x     F
0     1
1     0

x
0
1

0
1

x
0
1

0
1

value
of F

Identification
of the cell

F(x) = (1)

x   y   F
0   0   0
0   1   1
1   0   1

y
x 0   1
0
1

0     1

2     3
y

x 0   1
0 0   1

1-cell

Computer Organization Computer Architectures Lab

1   0   1
1   1   1

1 2     3
1

0   1
1   0

F(x,y) =  (1,2)
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KARNAUGH  MAP
Map Simplification

x   y   z   F
0   0   0   0
0   0   1   1
0   1   0   1
0   1   1   0
1   0   0   1
1   0   1   0

0   1   0   1
1   0   0   0

x
yz

00 01 11 10
0 0      1     3      2

4     5      7      6

x
yz

00 01 11 10
0
11x

y
x   y   z   F

1   0   1   0
1   1   0   0
1   1   1   0

1   0   0   04     5      7      6 1
F(x,y,z) =  (1,2,4)

1x
z

wx 00  01  11  10
w

u   v   w   x   F
0   0   0    0   0
0   0   0    1   1
0   0   1    0   0
0   0   1    1   1
0   1   0    0   0
0   1   0    1   0

uv
wx 00  01  11  10
00
01
11

0       1       3      2

4       5       7      6

12     13     15     14u

v

u   v   w   x   F

0   1   0    1   0
0   1   1    0   1
0   1   1    1   0
1   0   0    0   1
1   0   0    1   1
1   0   1    0   0
1   0   1    1   1
1   1   0    0   0

11
10 8       9      11     10

uv
wx 00   01   11  10
00 0     1    1     0

u

x

1   1   0    0   0
1   1   0    1   0
1   1   1    0   1
1   1   1    1   0   

uv
00
01
11    0     0    0     1
10    1     1    1     0

0     1    1     0
0     0    0     1

Computer Organization Computer Architectures Lab

10    1     1    1     0
F(u,v,w,x) =  (1,3,6,8,9,11,14)
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MAP  SIMPLIFICATION  - 2  ADJACENT  CELLS -
Map Simplification

Adjacent cells

- binary identifications are different in one bit

Rule:  xy’ +xy = x(y+y’) = x

- binary identifications are different in one bit
→ minterms associated with the adjacent

cells have one variable complemented each other

Cells (1,0) and (1,1) are adjacentCells (1,0) and (1,1) are adjacent
Minterms for (1,0) and (1,1) are 

x • y’ --> x=1, y=0
x • y  --> x=1, y=1 

F = xy’+ xy can be reduced to F = x   
From the map

x
y 0     1

0 0    0 2 adjacent cells xy’ and xy0
1 1    1

0    0

 (2,3)F(x,y) =

2 adjacent cells xy’ and xy
→ merge them to a larger cell x

Computer Organization Computer Architectures Lab

= xy’+ xy
= x



14Digital Logic Circuits

MAP  SIMPLIFICATION - MORE  THAN  2  CELLS -

wx wxu’v’

Map Simplification

u’v’w’x’ + u’v’w’x + u’v’wx + u’v’wx’
= u’v’w’(x’+x) + u’v’w(x+x’)
= u’v’w’ + u’v’w 
= u’v’(w’+w) 

uv
wx

1   1   1  1
uv

wx

1   1  1  1
1           1

v

w

v

w
u’v’ u’x’

1   1vw’= u’v’(w’+w) 
= u’v’ 1   1

1   1

1           1

1  1u
v

x

u
v

xuw v’x

1   1
1   1

vw’

u’v’w’x’+u’v’w’x+u’vw’x’+u’vw’x+uvw’x’+uvw’x+uv’w’x’+uv’w’x
= u’v’w’(x’+x) + u’vw’(x’+x) + uvw’(x’+x) + uv’w’(x’+x)
= u’(v’+v)w’ + u(v’+v)w’= u’(v’+v)w’ + u(v’+v)w’
= (u’+u)w’ = w’

wuv
wx

1   1
uv

1   1   1   1
V’w

u
v

1   1
1   1
1   1
1   1 u

v
1   1
1   1

1   1
1   1

1   1   1   1w’

u

Computer Organization Computer Architectures Lab

x
1   1 1   11   1

x
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MAP  SIMPLIFICATION
wx

00  01  11   10 w

Map Simplification

uv
wx

00  01  11   10
00
01   0    0    0     0
11   0    1    1     0

1    1    0     1

v

w

0 0 0 0
1 1 0 1

0 1 1 011   0    1    1     0
10   0    1    0     0

F(u,v,w,x) =  (0,1,2,9,13,15)

u
v

x

0 1 1 0
0 1 0 0

(0,1), (0,2), (0,4), (0,8)
Adjacent Cells of 1
Adjacent Cells of 0

(1,0), (1,3), (1,5), (1,9)

F(u,v,w,x) =  (0,1,2,9,13,15)
Merge (0,1) and (0,2)

--> u’v’w’ + u’v’x’
Merge (1,9)

(1,0), (1,3), (1,5), (1,9)
...
...
Adjacent Cells of 15

(15,7), (15,11), (15,13), (15,14)

--> v’w’x
Merge (9,13)

--> uw’x
Merge (13,15)

(15,7), (15,11), (15,13), (15,14)
Merge (13,15)

--> uvx

F = u’v’w’ + u’v’x’ + v’w’x + uw’x + uvx
But (9,13) is covered by (1,9) and (13,15)

Computer Organization Computer Architectures Lab

But (9,13) is covered by (1,9) and (13,15)
F = u’v’w’ + u’v’x’ + v’w’x + uvx
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IMPLEMENTATION  OF  K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map

Map Simplification

Logic function represented by a Karnaugh map
can be implemented in the form of I-AND-OR

A cell or a collection of the adjacent 1-cells canA cell or a collection of the adjacent 1-cells can
be realized by an AND gate, with some inversion of the input variables.

y

x’
y’

x’
y
z’1 1

x’x
z

x’
y’
z’

z’
x
y
z’

1
1

F(x,y,z) =  (0,2,6)

1            1
1

x’
z’

y
z’



F(x,y,z) =  (0,2,6)

x’

x’
y’
z’ x

x’
y
x
y
z’

z’
F z

y
z

F
z’
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z’
I   AND     OR
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IMPLEMENTATION  OF  K-MAPS - Product-of-Sums Form -
Map Simplification

Logic function represented by a Karnaugh map
can be implemented in the form of I-OR-AND

If we implement a Karnaugh map using 0-cells,If we implement a Karnaugh map using 0-cells,
the complement of F, i.e., F’, can be obtained.
Thus, by complementing F’ using DeMorgan’s
theorem F can be obtained

F(x,y,z) = (0,2,6)

x

y
z

F’ = xy’ + z

F = (xy’)z’
0 01 1

0 0 0 1x
zx

y’

F = (xy’)z’
= (x’ + y)z’0 0 0 1

x
y

z F

Computer Organization Computer Architectures Lab

z

I      OR                  AND
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IMPLEMENTATION  OF  K-MAPS

- Don’t-Care  Conditions -
In some logic circuits, the output responses

Map Simplification

In some logic circuits, the output responses
for some input conditions are don’t care 
whether they are 1 or 0.

In K-maps, don’t-care conditions are representedIn K-maps, don’t-care conditions are represented
by d’s in the corresponding cells.

Don’t-care conditions are useful in minimizing
the logic functions using K-map.
Don’t-care conditions are useful in minimizing
the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells

--> Reduce the number of variables in the product terms--> Reduce the number of variables in the product terms

x

y
1   d   d    1

d         1

x’

yz’
x

z yz’

x F

Computer Organization Computer Architectures Lab

x
y
z

F
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COMBINATIONAL  LOGIC  CIRCUITS

Half Adder

Combinational Logic Circuits

y yx   y    c     sHalf Adder

x

y

x

y

c = xy          s = xy’ + x’y
= x   y

x
y c

s

0   0   0     0
0   1   0     1
1   0   0     1
1   1   1     0

x   y    c     s
0

1
0

0
0

0
1

1

0   0   0       0    0
0   0   1       0    1

y y

= x   y
Full Adder

1   1   1     0

x   y   cn-1     cn s
0 0 0 10   0   0       0    0

0   0   1       0    1
0   1   0       0    1
0   1   1       1    0
1   0   0       0    1

x
cn-1

x
cn-1

cn s

0
1
0

1
1
1

1
0
1

0
1
0

1   0   0       0    1
1   0   1       1    0
1   1   0       1    0
1   1   1       1    1

cn = xy + xcn-1+ ycn-1
= xy + (x  y)cn-1

s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1
= x  y  c = (x  y)  c

cn s

= x  y  cn-1 = (x  y)  cn-1x
y

c

S

Computer Organization Computer Architectures Lab

cn-1
cn
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COMBINATIONAL  LOGIC  CIRCUITS
Combinational Logic Circuits

Other Combinational CircuitsOther Combinational Circuits

Multiplexer
Encoder
DecoderDecoder
Parity Checker
Parity Generator
etc

Computer Organization Computer Architectures Lab
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MULTIPLEXER
Combinational Logic Circuits

4-to-1 Multiplexer

0       0          I

Select      Output
S1 S0 Y
0       0          I0
0       1          I1
1       0          I2
1       1          I3

I0

I1

I2
Y

I3

S

Computer Organization Computer Architectures Lab

S0
S1
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ENCODER/DECODER
Combinational Logic Circuits

Octal-to-Binary Encoder D1
D2

D3D

A0

A1D3

D5
D6
D7

D4
A2

D7

2-to-4 Decoder

A0

D0

D1
0    0    0       0    1    1    1
E   A1 A0 D0 D1 D2 D3

2-to-4 Decoder

A1

D2

D3

0    0    0       0    1    1    1
0    0    1       1    0    1    1
0    1    0       1    1    0    1
0    1    1       1    1    1    0
1    d    d       1    1    1    1

Computer Organization Computer Architectures Lab

A1
E

1    d    d       1    1    1    1
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FLIP  FLOPS
Characteristics

Flip Flops

Characteristics
- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

1                  0              0                  1

0-state                       1-state
In order to be used in the computer circuits, state of the flip flop should 
have input terminals and output terminals so that it can be set to a certain

0                  1             1                  0

In order to be used in the computer circuits, state of the flip flop should 
have input terminals and output terminals so that it can be set to a certain
state, and its state can be read externally.

R Q S  R     Q(t+1)
0   0     Q(t)

S

Q

Q’

0   0     Q(t)
0   1       0
1   0       1
1   1    indeterminate

(forbidden)

Computer Organization Computer Architectures Lab

S Q’
(forbidden)
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CLOCKED  FLIP  FLOPS
In a large digital system with many flip flops, operations of individual flip flops 

Flip Flops

In a large digital system with many flip flops, operations of individual flip flops 
are required to be synchronized to a clock pulse. Otherwise, 
the operations of the system may be unpredictable.

R QR Q

Q’

c
(clock)

S Q’

Clock pulse allows the flip flop to change state only 
when there is a clock pulse appearing at the c terminal.

S         Q S         Q

when there is a clock pulse appearing at the c terminal.

We call above flip flop  a Clocked RS Latch, and symbolically as

S         Q
c

R         Q’

S         Q
c

R         Q’
operates when           operates when

Computer Organization Computer Architectures Lab

operates when           operates when
clock is high               clock is low
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RS-LATCH  WITH  PRESET  AND  CLEAR  INPUTS
Flip Flops

P(preset)

R Q
c

P(preset)

S Q’

c(clock)

clr(clear)clr(clear)

S        Q S        QP PS        Q
c

R        Q’

S        Q
c

R        Q’

P

clr

P

clr

S        Q
c

P S        Q
c

P

Computer Organization Computer Architectures Lab

R        Q’clr R        Q’clr
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D-LATCH
Flip Flops

D-Latch
Forbidden input values are forced not to occur
by using an inverter between the inputs

Q

E

D       Q

E    Q’

Q’
D(data)

E
(enable) E    Q’

D       Q

E     Q’D      Q(t+1)
0          0
1          11          1

Computer Organization Computer Architectures Lab
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EDGE-TRIGGERED  FLIP  FLOPS
Flip Flops

Characteristics
- State transition occurs at the rising edge or

falling edge of the clock pulse

Latches

respond to the input only during these periods

Edge-triggered Flip Flops (positive)

respond to the input only at this time

Computer Organization Computer Architectures Lab
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POSITIVE  EDGE-TRIGGERED  
Flip Flops

D-Flip FlopD-Flip Flop
S1       Q1

C1

R1      Q1'

S2       Q2

C2

R2      Q2'

D Q

Q'

D

C

Q

Q'

SR1                            SR2
D-FF

R1      Q1' R2      Q2'
C

Q' C Q'

SR1 inactive

JK-Flip Flop
SR1 active

SR2 active

SR1 active
SR2 inactive SR2 inactive

SR1 inactive

JK-Flip Flop

S1       Q1 S2       Q2
SR1                            SR2

J Q J      Q
CC1

R1      Q1'

C2

R2      Q2'

SR1                            SR2

K
C

Q'
C

K     Q'

Computer Organization Computer Architectures Lab

T-Flip Flop: JK-Flip Flop whose J and K inputs are tied together to make 
T input.  Toggles whenever there is a pulse on T input.
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CLOCK  PERIOD

Clock period determines how fast the digital circuit operates.

Flip Flops

Clock period determines how fast the digital circuit operates.
How can we determine the clock period ?

Usually, digital circuits are sequential circuits which has some flip flops 

...FF
C

FF FF

.

.

.

C

Combinational
Logic 
Circuit

.

.

.

Combinational
LogicFF FF

. Circuit .

Logic
Circuit

FF

Combinational logic Delay
FF Setup Time
FF Hold TimeFF Delay

td t ,t

Computer Organization Computer Architectures Lab

td ts,th
clock period T = td + ts + th
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DESIGN  EXAMPLE
Design Procedure:

Sequential Circuits

Design Procedure:
Specification  State Diagram  State Table 
Excitation Table  Karnaugh Map  Circuit Diagram

Example:  2-bit Counter -> 2 FF'sExample:  2-bit Counter -> 2 FF's
current                 next  
state       input   state        FF inputs
A   B           x       A   B    Ja  Ka  Jb  Kb
0   0            0       0    0      0    d    0    d
0   0            1       0    1      0    d    1    d
0   1            0       0    1      0    d    d    0

00

x=0

x=1

x=0

x=1

0   1            0       0    1      0    d    d    0
0   1            1       1    0      1    d    d    1
1   0            0       1    0      d    0    0    d
1   0            1       1    1      d    0    1    d
1   1            0       1    1      d    0    d    0
1   1            1       0    0      d    1    d    1

01

10

11 x=0

x=1

x=0

x=1
x=0

1   1            1       0    0      d    1    d    1

B

1 x

B
d   d
d   d

B

x1
d
d

x=0

B

x1   d
d

A
x

Ja

1

d   d
d   d

x
A

Ka

d   d
1

Kb

A
x1

1
d

d
d

clock

J     Q
C

K    Q'

J     Q
C

K    Q'

x AA
x1   d

1   d
d

Jb

B
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Ja = Bx      Ka = Bx    Jb = x         Kb = x clock
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SEQUENTIAL  CIRCUITS  - Registers
Sequential Circuits

A0 A1 A2 A3

D
Q

C D
Q

C D
Q

C D
Q

C

A0 A1 A2 A3

Clock
I I I II0 I1 I2 I3

Shift Registers

D    Q
C

D    Q
C

D    Q
C

D    Q
C

Serial
Input

Serial
Output

Bidirectional Shift Register with Parallel Load

C C C CInput

Clock

A0 A1 A2
A3

D
Q

C D
Q

C D
Q

C D
Q

C

A0 A1 A2
A3

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX
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Clock S0S1 SeriaI
Input

I0 I1 I2 I3Serial
Input
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SEQUENTIUAL  CIRCUITS  - Counters
Sequential Circuits

A0 A1 A2 A3

J          K

Q

J          K

Q

J          K

Q

J          K

Q

ClockClock

Counter
Enable

Output
Carry
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MEMORY  COMPONENTS
Memory Components

0

Logical Organization
0

words
(byte, or n bytes)

N - 1
Random Access Memory

- Each word has a unique address
- Access to a word requires the same time 

N - 1

- Access to a word requires the same time 
independent of the location of the word

- Organization n data input lines

2k Words
(n bits/word)

k address lines

Read

Write

Computer Organization Computer Architectures Lab

n data output lines

Write
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READ  ONLY  MEMORY(ROM)
Characteristics

Memory Components

Characteristics
- Perform read operation only, write operation is not possible
- Information stored in a ROM is made permanent

during production, and cannot be changed
- Organization k address input lines- Organization 

m x n ROM
(m=2k)

k address input lines

Information on the data output line depends only 
on the information on the address input lines.

(m=2 )

n data output lines

on the information on the address input lines.
--> Combinational Logic Circuit 

X0=A’B’ + B’C
X1=A’B’C + A’BC’
X2=BC + AB’C’ 1   0   0   0   0

1   1   0   0   0

address Output
ABC     X0 X1 X2 X3 X4

000
001X2=BC + AB’C’

X3=A’BC’ + AB’
X4=AB

X0=A’B’C’ + A’B’C + AB’C
X1=A’B’C + A’BC’

1   1   0   0   0
0   1   0   1   0
0   0   1   0   0
0   0   1   1   0
1   0   0   1   0

001
010
011
100
101

Computer Organization Computer Architectures Lab

X1=A’B’C + A’BC’
X2=A’BC + AB’C’ + ABC
X3=A’BC’ + AB’C’ + AB’C
X4=ABC’ + ABCCanonical minterms

1   0   0   1   0
0   0   0   0   1
0   0   1   0   1

101
110
111
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TYPES OF ROM
Memory Components

ROM
- Store information (function) during production
- Mask is used in the production process
- Unalterable- Unalterable
- Low cost for large quantity production  --> used in the final products

PROM (Programmable ROM)
- Store info electrically using PROM programmer at the user’s site- Store info electrically using PROM programmer at the user’s site
- Unalterable
- Higher cost than ROM -> used in the system development phase

-> Can be used in small quantity system

EPROM (Erasable PROM)
- Store info electrically using PROM programmer at the user’s site
- Stored info is erasable (alterable) using UV light (electrically in 

some devices) and rewriteablesome devices) and rewriteable
- Higher cost than PROM but reusable --> used in the system 

development phase. Not used in the system production 
due to eras ability

Computer Organization Computer Architectures Lab
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INTEGRATED CIRCUITS
Memory Components

Classification by the Circuit Density

SSI  - several (less than 10) independent gates
MSI  - 10 to 200 gates; Perform elementary digital functions;

Decoder, adder, register, parity checker, etc
MSI  - 10 to 200 gates; Perform elementary digital functions;

Decoder, adder, register, parity checker, etc
LSI  - 200 to few thousand gates; Digital subsystem

Processor, memory, etc
VLSI - Thousands of gates; Digital system

Microprocessor, memory moduleMicroprocessor, memory module

Classification by Technology

TTL  - Transistor-Transistor LogicTTL  - Transistor-Transistor Logic
Bipolar transistors
NAND

ECL - Emitter-coupled Logic
Bipolar transistor
NORNOR

MOS - Metal-Oxide Semiconductor
Unipolar transistor
High density

CMOS - Complementary MOS

Computer Organization Computer Architectures Lab

CMOS - Complementary MOS
Low power consumption


