DIGITAL LOGIC CIRCUITS

Logic Gates
Boolean Algebra
Map Specification
Combinational Circuits
Flip-Flops
Sequential Circuits
Memory Components
Integrated Circuits

LOGIC GATES

Digital Computers

- Imply that the computer deals with digital information, i.e., it deals
with the information that is represented by binary digits
- Why BINARY? instead of Decimal or other number system?
* Consider electronic signal

* Consider the calculation cost - Add

	0	
0	0	1
1	1	10

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	1011	
3	3	4	5	6	7	8	9	101112		
4	4	5	6	7	8	9	10111213			
5	5	6	7	8	9	1011121314				
6	6	7	8	9	101112131415					
7	7	8	9	10111213141516						
8	8	9	1011121314151617							
9	9	101112131415161718								

BASIC LOGIC BLOCK - GATE -

Types of Basic Logic Blocks

- Combinational Logic Block

Logic Blocks whose output logic value depends only on the input logic values

- Sequential Logic Block

Logic Blocks whose output logic value depends on the input values and the state (stored information) of the blocks

Functions of Gates can be described by

- Truth Table
- Boolean Function
- Karnaugh Map

COMBINATIONAL GATES

Name	Symbol	Function	Truth Table
AND		$\begin{aligned} & X=A \cdot B \\ & \text { or } \\ & X=A B \end{aligned}$	A B X 0 0 0 0 1 0 1 0 0 1 1 1
OR		$\mathbf{X}=\mathbf{A}+\boldsymbol{B}$	A B X 0 0 0 0 1 1 1 0 1 1 1 1
I	$A \rightarrow>_{0}$	$X=A^{\prime}$	A X 0 1 1 0
Buffer	\rightarrow	$\mathrm{X}=\mathrm{A}$	A X 0 0 1 1
NAND		$X=(A B) '$	 \mathbf{A} B X 0 0 1 0 1 1 1 0 1 1 1 0
NOR		$X=(A+B)^{\prime}$	 A B X 0 0 1 0 1 0 1 0 0 1 1 0
XOR Exclusive OR		$\begin{gathered} X=A \oplus B \\ \text { or } \\ X=A^{\prime} B+A B^{\prime} \end{gathered}$	A B X 0 0 0 0 1 1 1 0 1 1 1 0
XNOR Exclusive NOR or Equivalence	$B \longrightarrow 0-x$	$\begin{gathered} X=(A \oplus B)^{\prime} \\ \text { or } \\ X=A^{\prime} B^{\prime}+A B \end{gathered}$	A B X 0 0 1 0 1 0 1 0 0 1 1 1

BOOLEAN ALGEBRA

Boolean Algebra

* Algebra with Binary(Boolean) Variable and Logic Operations
* Boolean Algebra is useful in Analysis and Synthesis of Digital Logic Circuits
- Input and Output signals can be
represented by Boolean Variables, and
- Function of the Digital Logic Circuits can be represented by Logic Operations, i.e., Boolean Function(s)
- From a Boolean function, a logic diagram
can be constructed using AND, OR, and I
Truth Table
* The most elementary specification of the function of a Digital Logic Circuit is the Truth Table
- Table that describes the Output Values for all the combinations of the Input Values, called MINTERMS
- n input variables $\rightarrow \mathbf{2 n}^{\mathrm{n}}$ minterms

LOGIC CIRCUIT DESIGN

BASIC IDENTITIES OF BOOLEAN ALGEBRA

Usefulness of this Table
[15] and [16] : De Morgan's Theorem

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions to obtain logic diagrams utilizing different logic gates
-- Ordinarily ANDs, ORs, and Inverters
-- But a certain different form of Boolean function may be convenient to obtain circuits with NANDs or NORs
\rightarrow Applications of De Morgans Theorem

EQUIVALENT CIRCUITS

Many different logic diagrams are possible for a given Function

$$
\begin{align*}
F & =A B C+A B C^{\prime}+A^{\prime} C \tag{1}\\
& =A B\left(C+C^{\prime}\right)+A^{\prime} C \\
& =A B \cdot 1+A^{\prime} C \\
& =A B+A^{\prime} C \tag{3}
\end{align*}
$$

[13]
[7]
[4]
(1)

(2)

(3)

COMPLEMENT OF FUNCTIONS

A Boolean function of a digital logic circuit is represented by only using logical variables and AND, OR, and Invert operators.
\rightarrow Complement of a Boolean function

- Replace all the variables and subexpressions in the parentheses appearing in the function expression with their respective complements

$$
\begin{aligned}
A, B, \ldots, Z, a, b, \ldots, z & \Rightarrow A^{\prime}, B^{\prime}, \ldots, Z^{\prime}, a^{\prime}, b^{\prime}, \ldots, z^{\prime} \\
(p+q) & \Rightarrow(p+q)^{\prime}
\end{aligned}
$$

- Replace all the operators with their respective complementary operators

$$
\begin{gathered}
\text { AND } \Rightarrow \text { OR } \\
\text { OR }
\end{gathered}
$$

- Basically, extensive applications of the De Morgan's theorem

$$
\begin{aligned}
& \left(x_{1}+x_{2}+\ldots+x_{n}\right)^{\prime} \Rightarrow x_{1}{ }^{\prime} x_{2}{ }^{\prime} \ldots x_{n}^{\prime} \\
& \left(x_{1} x_{2} \ldots x_{n}\right)^{\prime} \Rightarrow x_{1}{ }^{\prime}+x_{2}^{\prime}+\ldots+x_{n}{ }^{\prime}
\end{aligned}
$$

SIMPLIFICATION

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for simplifying Boolean expressions.

KARNAUGH MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products form of Boolean Function, or Truth Table) is

- Rectangle divided into 2^{n} cells
- Each cell is associated with a Minterm
- An output(function) value for each input value associated with a mintern is written in the cell representing the minterm
\rightarrow 1-cell, 0-cell
Each Minterm is identified by a decimal number whose binary representation is identical to the binary interpretation of the input values of the minterm.

KARNAUGH MAP

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$
F(x, y, z)=\sum(1,2,4)
$$

	$00 \quad 011110$			
	0	1	1	0
01	0	0	0	1
11	0	0	0	1
10	1	1	1	

$F(u, v, w, x)=\sum(1,3,6,8,9,11,14)$

Adjacent cells

$$
\text { Rule: } x^{\prime}{ }^{\prime}+x y=x\left(y+y^{\prime}\right)=x
$$

- binary identifications are different in one bit
\rightarrow minterms associated with the adjacent cells have one variable complemented each other

Cells (1,0) and (1,1) are adjacent Minterms for (1,0) and (1,1) are

$$
\begin{aligned}
& x \cdot y \cdot->x=1, y=0 \\
& x \cdot y \text {--> } x=1, y=1
\end{aligned}
$$

F = xy'+ $x y$ can be reduced to $F=x$
From the map

MAP SIMPLIFICATION - MORE THAN 2 CELLS -

$$
\begin{aligned}
& \text { u'v'w'x' + u'v'w'x + u'v'wx + u'v'wx' } \\
& =\text { u'v'w'(x'+x) + u'v'w }\left(x+x^{\prime}\right) \\
& =\text { u'v'w' + u'v'w } \\
& =\text { u'v'(w'+w) } \\
& =\text { u'v' }
\end{aligned}
$$


```
u'v'w'x'+u'v'w'x+u'vw'x'+u'vw'x+uvw'x'+uvw'x+uv'w'x'+uv'w'x
\(=u{ }^{\prime} v^{\prime} w^{\prime}\left(x^{\prime}+x\right)+u^{\prime} v w^{\prime}\left(x^{\prime}+x\right)+u v w^{\prime}\left(x^{\prime}+x\right)+u v^{\prime} w^{\prime}\left(x^{\prime}+x\right)\)
\(=u^{\prime}\left(v^{\prime}+v\right) w^{\prime}+u\left(v^{\prime}+v\right) w^{\prime}\)
\(=\left(u^{\prime}+u\right) w^{\prime}=w^{\prime}\)
```


MAP SIMPLIFICATION

uv ${ }^{W \mathrm{WX}} 0000111 \quad 10$				
00	1	1	0	1
01	0	0	0	0
11	0	1	1	0
10	0	1	0	0

$$
F(u, v, w, x)=\sum(0,1,2,9,13,15)
$$

Merge (0,1) and (0,2)
Adjacent Cells of 1
Adjacent Cells of 0
$(1,0),(1,3),(1,5),(1,9)$
Adjacent Cells of 15
$(15,7),(15,11),(15,13),(15,14)$
--> u'v'w' + u'v’x'

Merge $(1,9)$
--> v'w’x

Merge $(9,13)$
--> uw'x
Merge $(13,15)$
--> uvx
F = u'v'w' $+u^{\prime} v^{\prime} x^{\prime}+v^{\prime} w^{\prime} x+u w^{\prime} x+u v x$
But $(9,13)$ is covered by $(1,9)$ and $(13,15)$
F = u'v'w' $+u^{\prime} v^{\prime} \mathbf{x}^{\prime}+\mathbf{v}^{\prime} \mathbf{w}^{\prime} \mathbf{x}+\mathbf{u v x}$

IMPLEMENTATION OF K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map

 can be implemented in the form of I-AND-ORA cell or a collection of the adjacent 1-cells can be realized by an AND gate, with some inversion of the input variables.

IMPLEMENTATION OF K-MAPS - Product-of-Sums Form -

Logic function represented by a Karnaugh map can be implemented in the form of I-OR-AND

If we implement a Karnaugh map using 0 -cells, the complement of F, i.e., F', can be obtained.
Thus, by complementing F' using DeMorgan's theorem F can be obtained

$$
\begin{aligned}
& \text { F }=\left(x y^{\prime}\right) z^{\prime} \\
& \\
& =\left(x^{\prime}+y\right) z^{\prime}
\end{aligned}
$$

In some logic circuits, the output responses for some input conditions are don't care whether they are 1 or 0.

In K-maps, don't-care conditions are represented by d's in the corresponding cells.

Don't-care conditions are useful in minimizing the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells --> Reduce the number of variables in the product terms

COMBINATIONAL LOGIC CIRCUITS

Half Adder

Full Adder

x	y	$\mathrm{c}_{\mathrm{n}-1}$	c_{n}	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
c_{n} & =x y+x c_{n-1}+y c_{n-1} \\
& =x y+(x \oplus y) c_{n-1} \\
s & =x^{\prime} y^{\prime} c_{n-1}+x x^{\prime} y c_{n-1}^{\prime}+x y^{\prime} c^{\prime}{ }_{n-1}+x y c_{n-1} \\
& =x \oplus y \oplus c_{n-1}=(x \oplus y) \oplus c_{n-1}
\end{aligned}
$$

COMBINATIONAL LOGIC CIRCUITS

Other Combinational Circuits

Multiplexer
Encoder
Decoder
Parity Checker
Parity Generator
etc

MULTIPLEXER

4-to-1 Multiplexer

Select		Output
S_{1}	$\mathrm{~S}_{0}$	Y
0	0	I_{0}
0	1	I_{1}
1	0	I_{2}
1	1	I_{3}

Octal-to-Binary Encoder

2-to-4 Decoder

E	A_{1}	$\mathrm{~A}_{0}$	D_{0}	D_{1}	D_{2}	D_{3}
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	d	d	1	1	1	1

FLIP FLOPS

Characteristics

- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

In order to be used in the computer circuits, state of the flip flop should have input terminals and output terminals so that it can be set to a certain state, and its state can be read externally.

CLOCKED FLIP FLOPS

In a large digital system with many flip flops, operations of individual flip flops are required to be synchronized to a clock pulse. Otherwise, the operations of the system may be unpredictable.

Clock pulse allows the flip flop to change state only when there is a clock pulse appearing at the \mathbf{c} terminal.

We call above flip flop a Clocked RS Latch, and symbolically as

operates when clock is high

operates when
clock is low

RS-LATCH WITH PRESET AND CLEAR INPUTS

D-LATCH

D-Latch

Forbidden input values are forced not to occur
by using an inverter between the inputs

EDGE-TRIGGERED FLIP FLOPS

Characteristics

- State transition occurs at the rising edge or falling edge of the clock pulse

Latches

respond to the input only during these periods

Edge-triggered Flip Flops (positive)

respond to the input only at this time

POSITIVE EDGE-TRIGGERED

D-Flip Flop

JK-Flip Flop

T-Flip Flop: JK-Flip Flop whose J and K inputs are tied together to make Tinput. Toggles whenever there is a pulse on T input.

CLOCK PERIOD

Clock period determines how fast the digital circuit operates.
How can we determine the clock period?
Usually, digital circuits are sequential circuits which has some flip flops

DESIGN EXAMPLE

Design Procedure:

Specification \Rightarrow State Diagram \Rightarrow State Table \Rightarrow Excitation Table \Rightarrow Karnaugh Map \Rightarrow Circuit Diagram
Example: 2-bit Counter -> 2 FF's

current state	input	next state	FF inputs
A B	X	A B	Ja Ka Jb Kb
00	0	00	0 d 0 d
00	1	01	0 d 1 d
01	0	01	0 d d 0
01	1	10	1 d d 1
10	0	10	d 000 d
10	1	11	d 01 d
11	0	11	d 0 d 0
11	1	00	d 1 d 1

SEQUENTIAL CIRCUITS - Registers

Shift Registers

Bidirectional Shift Register with Parallel Load

MEMORY COMPONENTS

Logical Organization

words
(byte, or n bytes)

Random Access Memory

- Each word has a unique address
- Access to a word requires the same time independent of the location of the word
- Organization

READ ONLY MEMORY(ROM)

Characteristics

- Perform read operation only, write operation is not possible
- Information stored in a ROM is made permanent during production, and cannot be changed
- Organization

n data output lines
Information on the data output line depends only on the information on the address input lines.
--> Combinational Logic Circuit
address
Output

$X_{0}=A^{\prime} B^{\prime}+B^{\prime} C$
$X_{1}=A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}$
$X_{2}=B C+A B^{\prime} C^{\prime}$
$X_{3}=A^{\prime} B C^{\prime}+A B^{\prime}$
$X_{4}=A B$
$X_{0}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C$
$X_{1}=A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}$
$X_{2}=A^{\prime} B C+A B^{\prime} C^{\prime}+A B C$
$X_{3}=A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B^{\prime} C$
$X_{4}=A B C^{\prime}+A B C$

ABC	\mathbf{x}_{0}	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
000	1	0	0	0	0
001	1	1	0	0	0
010	0	1	0	1	0
011	0	0	1	0	0
100	0	0	1	1	0
101	1	0	0	1	0
110	0	0	0	0	1
111	0	0	1	0	1

Canonical minterms

TYPES OF ROM

ROM

- Store information (function) during production
- Mask is used in the production process
- Unalterable
- Low cost for large quantity production --> used in the final products

PROM (Programmable ROM)

- Store info electrically using PROM programmer at the user's site
- Unalterable
- Higher cost than ROM -> used in the system development phase -> Can be used in small quantity system

EPROM (Erasable PROM)

- Store info electrically using PROM programmer at the user's site
- Stored info is erasable (alterable) using UV light (electrically in some devices) and rewriteable
- Higher cost than PROM but reusable --> used in the system development phase. Not used in the system production due to eras ability

INTEGRATED CIRCUITS

Classification by the Circuit Density
SSI - several (less than 10) independent gates
MSI - 10 to 200 gates; Perform elementary digital functions; Decoder, adder, register, parity checker, etc
LSI - 200 to few thousand gates; Digital subsystem Processor, memory, etc
VLSI - Thousands of gates; Digital system Microprocessor, memory module

Classification by Technology
TTL - Transistor-Transistor Logic Bipolar transistors
NAND
ECL - Emitter-coupled Logic Bipolar transistor NOR
MOS - Metal-Oxide Semiconductor Unipolar transistor
High density
CMOS - Complementary MOS Low power consumption

